Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum.

نویسندگان

  • Christina Grimmler
  • Holger Janssen
  • Desireé Krausse
  • Ralf-Jörg Fischer
  • Hubert Bahl
  • Peter Dürre
  • Wolfgang Liebl
  • Armin Ehrenreich
چکیده

Clostridium acetobutylicum is able to switch from acidogenic growth to solventogenic growth. We used phosphate-limited continuous cultures that established acidogenic growth at pH 5.8 and solventogenic growth at pH 4.5. These cultures allowed a detailed transcriptomic study of the switch from acidogenesis to solventogenesis that is not superimposed by sporulation and other growth phase-dependent parameters. These experiments led to new insights into the physiological role of several genes involved in solvent formation. The adc gene for acetone decarboxylase is upregulated well before the rest of the sol locus during the switch, and pyruvate decarboxylase is induced exclusively for the period of this switch. The aldehyde-alcohol dehydrogenase gene adhE1 located in the sol operon is regulated antagonistically to the paralog adhE2 that is expressed during acidogenic conditions. A similar antagonistic pattern can be seen with the two paralogs of thiolase genes, thlA and thlB. Interestingly, the genes coding for the putative cellulosome in C. acetobutylicum are exclusively transcribed throughout solventogenic growth. The genes for stress response are only induced during the shift but not in the course of solventogenesis when butanol is present in the culture. Finally, the data clearly indicate that solventogenesis is independent from sporulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for Clostridium acetobutylicum.

A sensitive gene expression reporter system was developed for Clostridium acetobutylicum ATCC 824 by using a customized gusA expression cassette. In discontinuous cultures, time course profiles of beta-glucuronidase specific activity reflected adequately in vivo dynamic up- and down-regulation of acidogenesis- and/or solventogenesis-associated promoter expression in C. acetobutylicum. Furthermo...

متن کامل

Elucidation of the roles of adhE1 and adhE2 in the primary metabolism of Clostridium acetobutylicum by combining in-frame gene deletion and a quantitative system-scale approach.

BACKGROUND Clostridium acetobutylicum possesses two homologous adhE genes, adhE1 and adhE2, which have been proposed to be responsible for butanol production in solventogenic and alcohologenic cultures, respectively. To investigate their contributions in detail, in-frame deletion mutants of each gene were constructed and subjected to quantitative transcriptomic (mRNA molecules/cell) and fluxomi...

متن کامل

Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis.

Clostridium beijerinckii is an anaerobic bacterium used for the fermentative production of acetone and butanol. The recent availability of genomic sequence information for C. beijerinckii NCIMB 8052 has allowed for an examination of gene expression during the shift from acidogenesis to solventogenesis over the time course of a batch fermentation using a ca. 500-gene set DNA microarray. The micr...

متن کامل

Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone–butanol–ethanol fermentation of Clostridium acetobutylicum in continuous culture

In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changi...

متن کامل

Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with RNA-Seq

BACKGROUND Butanol (n-butanol) has high values as a promising fuel source and chemical feedstock. Biobutanol is usually produced by the solventogenic clostridia through a typical biphasic (acidogenesis and solventogenesis phases) acetone-butanol-ethanol (ABE) fermentation process. It is well known that the acids produced in the acidogenic phase are significant and play important roles in the sw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular microbiology and biotechnology

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2011